Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38430604

RESUMO

Typically, bioactive peptides were uncovered from complex hydrolysates using sequential bioassay-guided fractionation. To increase the efficiency of bioactive peptide screening, a simple and convenient tandem bioassay-guided fractionation based on solid-phase extraction (SPE) was conducted to screen the angiotensin-I-converting enzyme (ACE) inhibitory peptides from the hydrolysate of Inca nut cake protein (INCP). The so-called SCX-RP SPE system was constructed by assembling SCX (strong cation exchange) and RP (reversed phase) SPE cartridges. Using this tandem SCX-RP SPE, the INCP digested with combined gastrointestinal protease (INCP GP) was fractionated into 30 fractions. The fraction F11 exhibited the highest ACE inhibitory activity among 30 fractions. The ACE IC50 of fraction F11 was calculated to be 6.6 ± 0.5 µg/mL. The ACEI activity of fraction F11 was stronger than the INCP GP hydrolysate (ACE IC50 of 12.7 ± 0.4 µg/mL). The tandem SCX-RP SPE fractionation reduced the number of ACE inhibitory (ACEI) peptide candidates from 127 peptides in the INCP GP hydrolysate to only ten peptides in fraction F11. Subsequently, WALPTQSW (WW-8) and WLPTKSW (WW-7) from fraction F11 were synthesized, and their ACE IC50 was determined to be 4.7 ± 0.1 and 7.9 ± 0.1 µM, respectively. The dipeptidyl peptidase-4 (DPP4) inhibitory and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activities of WALPTQSW (WW-8) were also explored to give IC50 values of 131.7 ± 5.2 and 191.8 ± 7.0 µM, respectively. The molecular docking and inhibition mechanism studies indicated that WW-8 inhibited ACE and DPP4 as competitive and non-competitive inhibitors, respectively. The pre-incubation experiment of WW-8 toward ACE and DPP4 demonstrated that WW-8 was a true-inhibitor type. Additionally, the amount of WW-8 was quantified to be 5.8 ± 0.2 and 35 ± 0.4 µg per milligram hydrolysate and fraction F11, respectively. This study demonstrated tandem bioassay-guided SCX-RP SPE fractionation efficiently screened ACEI peptide derived from INCP GP hydrolysate, adding more value to Inca nut cake (a leftover of the oil industry) as a bioactive peptide precursor.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Hidrolisados de Proteína , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Hidrolisados de Proteína/farmacologia , Dipeptidil Peptidase 4 , Nozes , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Extração em Fase Sólida , Peptidil Dipeptidase A
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38004494

RESUMO

The hydrolysate of bitter gourd seed protein, digested by the combined gastrointestinal proteases (BGSP-GPs), exhibited the most potent inhibition on angiotensin-I-converting enzyme (ACE) with an IC50 value of 48.1 ± 2.0 µg/mL. Using two independent bioassay-guided fractionations, fraction F5 from reversed-phase chromatography and fraction S1 from strong cation exchange chromatography exhibited the highest ACE inhibitory (ACEI) activity. Three identical peptides were simultaneously detected from both fractions and, based on the in silico appraisal, APLVSW (AW6) was predicted as a promising ACEI peptide. Their dipeptidyl peptidase-IV (DPP4) inhibitory (DPP4I) activity was also explored. The IC50 values of AW6 against ACE and DPP4 were calculated to be 9.6 ± 0.3 and 145.4 ± 4.4 µM, respectively. The inhibitory kinetics and intermolecular interaction studies suggested that AW6 is an ACE competitive inhibitor and a DPP4 non-competitive inhibitor. The quantities of AW6 in BGSP-GP hydrolysate, fractions F5 and S1, were also analyzed using liquid chromatography-tandem mass spectrometry. Notably, AW6 could resist hydrolysis in the human gastrointestinal tract according to the result of the simulated gastrointestinal digestion. To the best of our knowledge, this is the first discovery and characterization of a dual-function (ACEI and DPP4I activities) peptide derived from bitter gourd seed protein.

3.
Peptides ; 167: 171046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330111

RESUMO

The pearl garlic (Allium sativum L.) protein (PGP) was digested using pepsin, trypsin, α-chymotrypsin, thermolysin, and simulated gastrointestinal digestion. The α-chymotrypsin hydrolysate showed the highest angiotensin-I-converting enzyme inhibitory (ACEI) activity, with an IC50 value of 190.9 ± 11 µg/mL. A reversed-phase C18 solid-phase extraction (RP-SPE) cartridge was used for the first fractionation, and the S4 fraction from RP-SPE showed the most potent ACEI activity (IC50 =124.1 ± 11 3 µg/mL). The S4 fraction was further fractionated using a hydrophilic interaction liquid chromatography SPE (HILIC-SPE). The H4 fraction from HILIC-SPE showed the highest ACEI activity (IC50 =57.7 ± 3 µg/mL). Four ACEI peptides (DHSTAVW, KLAKVF, KLSTAASF, and KETPEAHVF) were identified from the H4 fraction using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and their biological activities were appraised in silico. Among the identified α-chymotryptic peptides, DHSTAVW (DW7), derived from I lectin partial protein, exhibited the most potent ACEI activity (IC50 value of 2.8 ± 0.1 µM). DW7 was resistant to simulated gastrointestinal digestion, and it was classified as a prodrug-type inhibitor according to the preincubation experiment. The inhibition kinetics indicated that DW7 was a competitive inhibitor, which was rationalized by the molecular docking simulation. The quantities of DW7 in 1 mg of hydrolysate, S4 fraction, and H4 fraction were quantified using LC-MS/MS to give 3.1 ± 0.1, 4.2 ± 0.1, and 13.2 ± 0.1 µg, respectively. The amount of DW7 was significantly increased by 4.2-fold compared with the hydrolysate, which suggested that this method is efficient for active peptide screening.


Assuntos
Alho , Hipertensão , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Peptidil Dipeptidase A/química
4.
Pharmaceutics ; 15(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36839747

RESUMO

The dipeptidase angiotensin-I-converting enzyme (ACE) pre-incubation, liquid chromatography- mass spectrometry (LC-MS), and stable-isotope labeling were integrated for an efficient screening of ACE's exogenous substrates from milk hydrolysate. Using this approach, 31 substrates were readily identified from 478 identified peptides and their activities were confirmed using synthetic peptides. Their reactivity is highly correlated with the decreased isotope ratio observed in LC-MS. Among these substrates, the most frequently observed residue at the P1' position was Leu/Ser. It also revealed that ACE would not cleave the peptide when P1' is Pro, P2' is Asp/Glu, or P1 position is Ile. Interestingly, the sequential two-stage hydrolysis was also found. Moreover, their protective effects against ACE-mediated hydrolysis of angiotensin I (Ang-I) were also examined. The result indicated that AYFYPELFR and HLPLPLLQSW can significantly retard the hydrolysis of Ang-I and act as substrate-type inhibitors.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36532851

RESUMO

Methyl gallate is a polyphenolic compound found in many plants, and its antioxidant, antitumor, antibacterial, and anti-inflammatory effects have been extensively studied. More recently, antidepressant-like effects of methyl gallate have been demonstrated in some studies. In the present study, we examined the effects of methyl gallate on melanogenesis, including the tyrosinase inhibitory effect, the melanin content, and the molecular signaling pathways involved in this inhibition. The results showed that methyl gallate inhibited tyrosinase activity and significantly downregulated the expressions of melanin synthesis-associated proteins, including microphthalmia-associated transcription factor (MITF), tyrosinase, dopachrome tautomerase (Dct), and tyrosinase-related protein-1 (TRP1). In conclusion, our findings indicated that activation of MEK/ERK and PI3K/Akt promoted by methyl gallate caused downregulation of MITF and triggered its downstream signaling pathway, thereby inhibiting the production of melanin. In summary, methyl gallate showed significant inhibitory activity against melanin formation, implying that it may be a potential ingredient for application in skin-whitening cosmetics.

6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362072

RESUMO

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Assuntos
Antineoplásicos , Flavonas , Animais , Humanos , Masculino , Camundongos , Acetilação , Apoptose , Disponibilidade Biológica , Linhagem Celular Tumoral , Metaloproteinase 2 da Matriz , Camundongos Nus , Flavonas/química , Flavonas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética
7.
Mar Biotechnol (NY) ; 24(5): 882-894, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36074309

RESUMO

ACE inhibitors generated from food proteins have recently become the most well-known subclass of bioactive peptides, and their bio-functionality can be a potential alternative to natural bioactive food components and synthetic drugs. The bioactivities of Acrochaetium sp., the red alga used in this investigation, have never been reported before. Screening of bioactive peptides from Acrochaetium sp. as ACE inhibitors were hydrolyzed with various proteolytic enzymes. Protein hydrolysates were fractionated separately using reversed phased (RP) and strong cation exchange (SCX) chromatography and identified as VGGSDLQAL (VL-9) using α-chymotrypsin. It comes from Phycoerythrin (PE), an abundant protein in a primarily red alga. The peptide VL-9 shows the ACE inhibitory activity with IC50 value 433.1 ± 1.08 µM. The inhibition pattern showed VL-9 as a non-competitive inhibitor. Molecular docking simulation proved that VL-9 was non-competitive inhibition due to the interaction peptide and ACE was not in the catalytic site. Moreover, VL-9 derived from Acrochaetium sp. is a natural bioactive peptide that is safer and available for food protein; also, the ACE inhibitory peptide derived from Acrochaetium sp. could be the one alternative resource to develop functional food for combating hypertension.


Assuntos
Rodófitas , Medicamentos Sintéticos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensinas , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ficoeritrina , Hidrolisados de Proteína/química , Rodófitas/metabolismo
8.
Chem Biodivers ; 19(7): e202200137, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35726787

RESUMO

Regulation of key digestive enzymes is currently considered an effective remedy for diabetes mellitus. In this study, bioactive constituents were purified from Terminalia boivinii fruits and identified by 1 H-NMR, 13 C-NMR and EI-MS. In vitro and in silico methods were used to evaluate α-glucosidase, α-amylase, and lipase inhibition activities. Compounds 1, 2, and 4-7 with IC50 values between 89 and 445 µM showed stronger α-glucosidase inhibitory activities than the antihyperglycemic drug acarbose (IC50 =1463.0±29.5 µM). However, the compounds showed lower inhibitory effects against α-amylase and lipase with IC50 values above 500 µM than acarbose (IC50 =16.7±3.5 µM) and ursolic acid (IC50 =89.5±5.6 µM), respectively. Lineweaver-Burk plots showed that compounds 1, 2, and 7 were non-competitive inhibitors, compounds 4 and 5 were competitive inhibitors and compound 6 was a mixed-type inhibitor. Fluorescence spectroscopic data showed that the compounds altered the microenvironment and conformation of α-glucosidase. Computer simulations indicated that the compounds and enzyme interacted primarily through hydrogen bonding. The findings indicated that the compounds were inhibitors of α-glucosidase and provided significant structural basis for understanding the binding activity of the compounds with α-glucosidase.


Assuntos
Terminalia , alfa-Glucosidases , Acarbose , Frutas/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Cinética , Lipase/metabolismo , Simulação de Acoplamento Molecular , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
9.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159808

RESUMO

Zinc oxide thin films have been developed through thermal oxidation of Zinc thin films grown by high impulse power magnetron sputtering (HiPIMS). The influence of various sputtering power on thin film structural, morphological, photocatalytic, and antimicrobial properties was investigated. X-ray diffraction (XRD) analysis confirmed that the crystalline phase of ZnO thin films consists of a hexagonal wurtzite structure. Increasing the sputtering power will lead to intrinsic stress on thin films that promote whisker formation. In this study, whiskers were successfully developed on the thin films without precursors/catalysts and not thermally treated over the Zn melting point. This finding showed that the film phase structure and morphology are significantly affected by sputtering power. It was found that ZnO thin films exhibit high photocatalytic performance under UV irradiation (89.91%) of methylene blue after 300 min of irradiation. The antimicrobial activity on ZnO thin films showed significant inhibition activity (p < 0.05) against E. coli, S. aureus, and C. albicans. However, the whisker formation on ZnO thin films is not accessible to enhance photocatalytic and antimicrobial activity. This study demonstrates that the HiPIMS method through the thermal oxidation process can promote a good performance of ZnO thin films as photocatalyst and antimicrobial agents.

10.
J Dairy Sci ; 105(3): 1913-1928, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086704

RESUMO

An improved bioassay-guided fractionation was performed to effectively screen angiotensin-I converting enzyme inhibitory (ACEI) peptides from milk protein hydrolysate. The aqueous normal phase liquid chromatography, namely hydrophilic interaction liquid chromatography (HILIC), was used as a format of solid-phase extraction (SPE) short column for the first fractionation, then the HILIC-SPE fraction with the best ACEI activity (IC50 = 61.75 ± 5.74 µg/mL; IC50 = half-maximal inhibitory concentration) was obtained when eluted by 95% acetonitrile + 0.1% formic acid (fraction F1). The best HILIC-SPE fraction was further fractionated using reversed-phase (RP)-SPE short column. The best RP-SPE fraction was obtained when eluted by 20% acetonitrile + 0.1% formic acid (fraction P3) with an ACEI activity of IC50 36.22 ± 1.18 µg/mL. After the 2-step fractionation, the IC50 value of fraction P3 significantly decreased by 8.92-fold when compared with the crude hydrolysate. Several peptides were identified from fraction P3 using liquid chromatography-tandem mass spectrometry. The in silico analysis of these identified sequences based on the BIOPEP database predicted that HLPLPLL (HL-7) was the most active peptide against angiotensin-converting enzyme (ACE). The HL-7 derived from ß-casein showed a potent ACEI activity (IC50 value is 16.87 ± 0.3 µM). The contents of HL-7 in the gastrointestinal protease hydrolysate and RP-SPE fraction originated from 1 mg of milk proteins were quantified using a multiple reaction monitoring mode upon liquid chromatography-tandem mass spectrometry analysis to give 19.86 ± 1.14 pg and 14,545.8 ± 572.9 pg, respectively. Besides, the kinetic study indicated that HL-7 was a competitive inhibitor and the result was rationalized using the docking simulation. The study demonstrated an efficient screening of ACEI peptides from commercially available milk powders using a simple SPE process instead of a sophisticated instrument such as HPLC. Moreover, the potent ACEI peptide HL-7 uncovered by this method could be a natural ACE inhibitor.


Assuntos
Peptídeo Hidrolases , Peptidil Dipeptidase A , Angiotensinas , Animais , Bioensaio/veterinária , Peptídeo Hidrolases/metabolismo , Peptídeos/farmacologia , Hidrolisados de Proteína/química
11.
Foods ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613372

RESUMO

Contemporary pharmacological studies have reported that freshwater clam (Corbicula fluminea) can provide a broad spectrum of bioactivities, including antioxidant, anticancer, antihypertensive, hepatoprotective, and hypocholesterolemic effects. The aim of this study was to evaluate the gastroprotective effects of water extract of freshwater clam (WEC) on indomethacin (IND)-induced gastric mucosal cell damage in vitro and gastric ulcer in vivo. The cell viability of rat gastric mucosa RGM-1 cells was markedly decreased by 0.8 mM of IND treatment, and pre-treated with various concentration of WEC significantly restored IND-induced cell damage in a dose-dependent manner. WEC also significantly attenuated the elevated reactive oxygen species (ROS) levels, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, and nuclear factor-κB (NF-κB) p65 nuclear translocation induced by IND. In the in vivo study, IND caused severe gastric ulcer in Wistar rats, while WEC pretreatment effectively reduced the ulcer area and edema in the submucosa. We found that WEC significantly restored glutathione (GSH) content in gastric mucosa in a dose-dependent manner (p < 0.05). The reduction of prostaglandin E2 (PGE2) caused by IND was also improved with higher doses of WEC administration. Moreover, the overexpression of COX-2, iNOS, and tumor necrosis factor-α (TNF-α) proteins in gastric mucosa was downregulated by administration of WEC. Consequently, WEC can be used as a potential nutritional supplement to improve NSAIDs-caused gastric mucosal lesions.

12.
Int J Mol Sci ; 22(17)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34502417

RESUMO

Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides' efficiencies before commercial applications.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Proteínas na Dieta/química , Inibidores Enzimáticos , Hipoglicemiantes , Peptídeos , Animais , Diabetes Mellitus Tipo 2/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Peptídeos/química , Peptídeos/uso terapêutico
13.
Molecules ; 25(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202651

RESUMO

Protein phosphorylation is a crucial post-translational modification that plays an important role in the regulation of cellular signaling processes. Site-specific quantitation of phosphorylation levels can help decipher the physiological functions of phosphorylation modifications under diverse physiological statuses. However, quantitative analysis of protein phosphorylation degrees is still a challenging task due to its dynamic nature and the lack of an internal standard simultaneously available for the samples differently prepared for various phosphorylation extents. In this study, stable-isotope dimethyl labeling coupled with phosphatase dephosphorylation (DM + deP) was tried to determine the site-specific degrees of phosphorylation in proteins. Firstly, quantitation accuracy of the (DM + deP) approach was confirmed using synthetic peptides of various simulated phosphorylation degrees. Afterwards, it was applied to evaluate the phosphorylation stoichiometry of milk caseins. The phosphorylation degree of Ser130 on α-S1-casein was also validated by absolute quantification with the corresponding synthetic phosphorylated and nonphosphorylated peptides under a selected reaction monitoring (SRM) mode. Moreover, this (DM + deP) method was used to detect the phosphorylation degree change of Ser82 on the Hsp27 protein of HepG2 cells caused by tert-butyl hydroperoxide (t-BHP) treatment. The results showed that the absolute phosphorylation degree obtained from the (DM + deP) approach was comparable with the relative quantitation resulting from stable-isotope dimethyl labeling coupled with TiO2 enrichment. This study suggested that the (DM + deP) approach is promising for absolute quantification of site-specific degrees of phosphorylation in proteins, and it may provide more convincing information than the relative quantification method.


Assuntos
Marcação por Isótopo , Monoéster Fosfórico Hidrolases/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Caseínas/química , Cromatografia Líquida , Proteínas de Choque Térmico HSP27/metabolismo , Células Hep G2 , Humanos , Peptídeos/química , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Reprodutibilidade dos Testes , terc-Butil Hidroperóxido/farmacologia
14.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053699

RESUMO

Gac (Momordica cochinchinensis Spreng.) seed proteins (GSPs) hydrolysate was investigated for angiotensin I-converting enzyme (ACE) inhibitory activities. GSPs were hydrolyzed under simulated gastrointestinal digestion using a combination of enzymes, including pepsin, trypsin, and chymotrypsin. The screening of ACE inhibitory peptides from GSPs hydrolysate was performed using two sequential bioassay-guided fractionations, namely hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC). Then, the peptides in the fraction with the highest ACE inhibitory activity were identified by LC-MS/MS. The flow-through (FT) fraction showed the most potent ACE inhibitory activity when HILIC fractionation was performed. This fraction was further separated using RP-HPLC, and the result indicated that fraction 8 (RP-F8) showed the highest ACE inhibitory activity. In the HILIC-FT/RP-F8 fraction, 14 peptides were identified using LC-MS/MS analysis coupled with de novo sequencing. These amino acid chains had not been recorded previously and their ACE inhibitory activities were analyzed in silico using the BIOPEP database. One fragment with the amino acid sequence of ALVY showed a significant ACE inhibitory activity (7.03 ± 0.09 µM). The Lineweaver-Burk plot indicated that ALVY is a competitive inhibitor. The inhibition mechanism of ALVY against ACE was further rationalized through the molecular docking simulation, which revealed that the ACE inhibitory activities of ALVY is due to interaction with the S1 (Ala354, Tyr523) and the S2 (His353, His513) pockets of ACE. Bibliographic survey allowed the identification of similarities between peptides reported as in gac fruit and other proteins. These results suggest that gac seed proteins hydrolysate can be used as a potential nutraceutical with inhibitory activity against ACE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Cromatografia Líquida/métodos , Hidrolisados de Proteína/química , Proteínas de Armazenamento de Sementes/química , Espectrometria de Massas em Tandem/métodos , Simulação de Acoplamento Molecular
15.
Pharmaceuticals (Basel) ; 13(10)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066488

RESUMO

Five novel peptides (LPLF, WLQL, LPSW, VPGLAL, and LVGLPL) bearing dipeptidyl peptidase IV (DPP-IV) inhibitory activities were identified from the gastrointestinal enzymatic hydrolysate of soft-shelled turtle yolk (SSTY) proteins. Peptides were isolated separately using reversed-phase (RP) chromatography in parallel with off-line strong cation exchange (SCX) chromatography followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to determine sequences. Among these peptides, LPSW showed the highest DPP-IV inhibitory activity with an IC50 value of 269.7 ± 15.91 µM. The results of the pre-incubation experiment and the kinetic study of these peptides indicated that WLQL is a true inhibitor and its inhibition toward DPP-IV is of an uncompetitive model, while LPLF, LPSW, and VPGLAL are real-substrates and competitive inhibitors against DPP-IV. The DPP-IV inhibitory peptides derived from SSTY hydrolysate in study are promising in the management of hyperglycemia in Type 2 diabetes.

16.
Anticancer Res ; 40(11): 6345-6354, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33109572

RESUMO

BACKGROUND/AIM: The clinical course of acute leukemia is complicated, and it is often necessary to combine or change treatment methods due to the rapid increase and spread of malignant cells. In this study, the potential anti-leukemia activities of prepared garlic essential oil (GEO) and some organosulfur compounds contained therein were examined. MATERIALS AND METHODS: Garlic essential oil component identification by gas chromatography-mass spectrometry (GC-MS). MTT assay evaluated cytotoxicity of tested samples. Leukemia cell differentiation was determined by NBT assay. Apoptosis and related mechanisms were investigated by western blotting. RESULTS: GC-MS analysis confirmed that the two most abundant constituents, diallyl disulfide (DADS) and diallyl trisulfide (DATriS), constituted 80% of the composition. GEO and DADS exhibited the best effects in terms of significant production of intracellular reactive oxygen species (ROS), induction apoptosis and potentiation differentiation of human promyelocytic leukemia cell line HL-60 cells. The GEO-mediated apoptosis was alleviated by the free radical scavenger N-acetyl-L-cysteine (NAC). CONCLUSION: The anti-leukemia activity of GEO and organosulfur compound DADS through the action of ROS elevation was herein confirmed.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Alho/química , Leucemia Promielocítica Aguda/patologia , Óleos Voláteis/farmacologia , Compostos de Enxofre/farmacologia , Células HL-60 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Food Chem ; 333: 127411, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682228

RESUMO

Tempeh, a traditional Indonesian soybean product produced by fermentation, is especially popular because of its umami taste. In this study, a novel umami peptide GENEEEDSGAIVTVK (GK-15) was identified in the small peptide (<3 kDa) fraction of the water extract of tempeh using LC-MS/MS analysis and database-assisted identification. The umami taste of GK-15 was further validated using sensory evaluation, which suggested that GK-15 may be one of the key components contributing to the umami taste in tempeh. To rationalize the biological effect of GK-15, molecular docking of GK-15 into the N-terminal extracellular ligand-binding domain of the umami (T1R) receptor was performed. ZDOCK data showed that GK-15 could perfectly bind either to the open or closed conformation of T1R3. To the best of our knowledge, the present work is the first study to focus on the screening of umami peptides from tempeh.


Assuntos
/metabolismo , Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Alimentos de Soja/análise , Paladar , Ligação Proteica
18.
Food Sci Nutr ; 8(6): 2904-2912, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32566208

RESUMO

It is hypothesized that the oxidative/nitrosative stress inhibitory effect of a flavanone is governed by its chemical structure. However, the existing cell-based antioxidant assays primarily focus on single chemical to initiate toxic species production. In this study, a novel cell model using macrophage treated with a combination of PMA and LPS leading to generation of peroxynitrite was proposed to provide a more real physiological condition. Three flavanones (eriodictyol, naringenin, and pinocembrin) with different number of ortho-dihydroxyl groups on B-ring were used to provide a more comprehensive evaluation of the role of chemical structure in the new model. Dihydrorhodamine123 assay, protein immunoblotting, immunofluorescence assay, and in silico analysis by molecular docking between the flavanones and IKKß catalytic kinase domain at the ATP binding site were employed. Results indicated that the generation of peroxynitrite was decreased at 10 µM of flavanones; eriodictyol was the most effective inhibitor. Western blot analysis and confocal fluorescence image also showed that eriodictyol could inhibit iNOS and p47 protein expressions through the inhibition of NF-kB translocation and performed the maximal inhibition compared to that of the other groups. In addition, the highest CDOCKER energy values of eriodictyol (38.6703 kcal/mol) confirmed that the 3',4'-ortho-dihydroxylation on the B-ring played a crucial role in binding with IKKß kinase domain at ATP binding site. Finally, we propose that the ortho-dihydroxyl groups on B-ring of flavanone may influence directly the occupation of the ATP binding site of IKKß kinase domain leading to the abrogation of peroxynitrite formation in the innovative cell model.

19.
Nat Prod Res ; 34(11): 1547-1552, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30580622

RESUMO

Radix Rehmanniae (RR) is the root tuber of Rehmannia glutinosa Libosch. Herein, the methanol extracts of dried RR (DRR) and processed RR (PRR) were partitioned to obtain ethyl acetate, aqueous, and n-butanol layers. The angiotensin-I converting enzyme (ACE) inhibition test indicated that the ethyl acetate extracts of DRR (DRRE) and PRR (PRRE) show better inhibitory activity. Therefore, changes in blood pressure were tested over 24 h in spontaneously hypertensive rats, with DRR showing good anti-hypertensive activity. DRRE was further subjected to column chromatography; 28 fractions were separated and tested for ACE inhibition. Ultimately, six compounds were identified by spectral analysis, and literature comparison. Specifically, ursolic acid and oleanolic acid showed better ACE inhibition than the other compounds. This study confirmed that DRR has anti-hypertensive activity. In future, DRR's potential as a health food should be further assessed.


Assuntos
Anti-Hipertensivos/isolamento & purificação , Rehmannia/química , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Tubérculos/química , Ratos
20.
Foods ; 8(9)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487835

RESUMO

The effects of dry processing and maturity on antioxidant activity, total phenolic content, total procyanidins, and identity of phenolic compounds in coffee leaves were evaluated. Fresh coffee leaves were tray-dried at 40 °C for 8 h before total phenolic content, total procyanidins, and antioxidant activity were analyzed. The drying process significantly (p < 0.05) improved the release of total phenolic content and total procyanidins compared with the fresh leaves. The results showed that the young leaves exposed to drying processes had the highest total phenolic content, total procyanidins, and DPPH radical scavenging activity. Therefore, the effect of different drying temperatures (30, 40, and 50 °C) in the young leaves were further analyzed. The results indicated that DPPH radical scavenging activity, total phenolic content, and total procyanidins were increasingly generated when exposed to an increase in drying temperatures, whereby the highest bioactivity was evident at 50 °C. The DPPH radical scavenging activity of the coffee leaf teas was significantly correlated with total phenolic content and total procyanidins. Identification of Coffea arabica L. bioactive compounds by LC-MS showed the presence of catechin or epicatechin, mangiferin or isomangiferin, procyanidin B, caffeoylquinic acids (CQA), caffeine, quercetin-3-O-glucoside, procyanidin C, rutin, and 3,4-diCQA. Coffea arabica L. leaf tea was confirmed to be a potential functional food rich in phenolic compounds with strong antioxidant activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...